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NUMERICAL SOLUTIONS OF OPTIMAL CONTROL FOR

THERMALLY CONVECTIVE FLOWS

S. S. RAVINDRAN*

Center for Research in Scienti®c Computation, Department of Mathematics, North Carolina State University, Raleigh,
NC 27695-8205, U.S.A.

SUMMARY

We study the numerical solution of optimal control problems associated with two-dimensional viscous
incompressible thermally convective ¯ows. Although the techniques apply to more general settings, the
presentation is con®ned to the objectives of minimizing the vorticity in the steady state case and tracking the
velocity ®eld in the non-stationary case with boundary temperature controls. In the steady state case we develop
a systematic way to use the Lagrange multiplier rules to derive an optimality system of equations from which an
optimal solution can be computed; ®nite element methods are used to ®nd approximate solutions for the
optimality system of equations. In the time-dependent case a piecewise-in-time optimal control approach is
proposed and the fully discrete approximation algorithm for solving the piecewise optimal control problem is
de®ned. Numerical results are presented for both the steady state and time-dependent optimal control problems.
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1. INTRODUCTION

In past years, control of ¯uid ¯ows has received considerable attention owing to its applicability in

¯ow separation, combustion, ¯uid±structure interaction, design of novel submarine propulsion

devices and modelling of nuclear reactors. It has been demonstrated in various experiments that

control mechanisms such as boundary velocity, boundary temperature, moving surfaces, application

of electromagnetic force, etc. can provide effective tools for control of ¯uids.

This paper presents a systematic study on numerical approximation and simulation of control of

¯uid ¯ows using boundary temperature as control mechanism. In order to keep the illustration of

ideas and computation easy, we restrict our study to cavity and expanding channel domains and the

¯uid is assumed to be incompressible.

The control objective in the context of optimal control problems is usually stated as the

minimization of a cost functional such as the vorticity functional

j�u� �
�
O�
jH� uj2dO
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or the velocity-tracking functional

j�u� �
�
O�
juÿ Uj2dO;

where U is a desired velocity, O* is a part or the whole of the ¯ow domain O and the ¯ow is assumed

stationary. The controls are some physical parameters that can be adjusted in practice, such as the

velocity or temperature at the boundary.

We cast the control problem as a constrained minimization problem with appropriate costs and

constraints depending on the problem under investigation. Our next step towards numerical resolution

of the control problem is to derive relevant necessary conditions of optimality characterizing the

control. Once we have the necessary conditions of optimality, we approximate them with ®nite

elements and employ Newton's method to solve the ®nite-dimensional form of the necessary

conditions of optimality. For high-Reynolds-number ¯ows we employ Reynolds number marching to

carry out the computations.

1.1. Description of steady state optimal control problem

In the steady state case we study vorticity minimization in channel ¯ows as a prototype problem to

illustrate our methods and results. It has been seen in channel ¯ows with sudden expansion that near

the corner region a recirculation appears, the size of which increases with increasing Reynolds

number. Figure 1(a) (see Section 2.3) qualitatively illustrates the ¯ow situation for high Reynolds

numbers. Our objective is to suppress this recirculation by adjusting the temperature on a part of the

boundary of the channel. Therefore we consider the following control problem. Find a candidate

velocity±pressure±temperature triple (u, p, T) by appropriately controlling (adjusting) the boundary

temperature g such that the vorticity v�H6 u in the corner region O* (see Figure 1(h)) of the

channel is minimized. Precisely, we will study the following optimal control problem. Find

(u, p, T, g) such that the functional

j�u; g� � 1

2

�
O�
jH� uj2dO� b

2

�
Gtb

jgj2dG �1�

is minimized subject to

ÿ 1

Re
Du� �u ? H�u� Hp� lg0

u2
0

Tg � f in O; �2�

H ? u � 0 in O; �3�
ÿ g

RePr
DT � u ? HT � 0 in O; �4�

with the boundary conditions as follows. Let G�Gin [ Gout [ Gs [ Gtb be the boundary of our

domain O. Then

u � uin and
@T

@n
� 0 on Gin;

u � uout and
@T

@n
� 0 on Gout;

u � 0 and
@T

@n
� h�g�x� ÿ T � on Gtb � Gtop [ Gbottom;

u � 0 and T � T1�x� on Gs;
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where u0, T0 and T1 are given functions on the boundary, g is the gravity vector and g is the

temperature control by radiational heating or cooling. In the cost functional j the term�
O� jH� uj2dO is the vorticity in the L2-norm, which measures the turbulence in the ¯ow, the term�
G jgj2dG is the measure of the magnitude of the control applied on the boundary, which is also

required for the rigorous mathematical analysis of the control problem, and the penalizing parameter

b adjusts the size of the terms in the cost. The ¯ow quantities u, T and p denote as usual the velocity,

temperature and pressure respectively. The parameters Re, Pr and g are the Reynolds number, Prandtl

number and speci®c heat ratio respectively and l, g0 and u0 are the characteristic length, gravity and

velocity respectively. A derivation of the system (2)±(4), known in the literature as the Boussinesq

model, is given in Reference 1.

1.2. Description of time-dependent optimal control problem

In the time-dependent case we will use a velocity-tracking problem to illustrate our ideas and

methods. We look for a candidate velocity±pressure±temperature triplet (u, p, T) by controlling the

boundary temperature g piecewise in time such that u `best matches' a target velocity ®eld U. We try

to match the velocity ®elds at a sequence of time intervals; the velocity tracking at each time interval

is formulated as an optimal control problem. Precisely, we will study the following piecewise (in

time) optimal control problem.

1. First, choose a suf®ciently small d> 0, choose a sequence ftngNn�0 de®ned by tn� nd and de®ne

u(0)� u0 and T(0)� T0.

2. Then, inductively, for each n ®nd a solution (u(n), p(n), T(n), g(n)) on the interval (tnÿ1, tn) which

minimizes the instantaneous cost functional

jtn
�u�tn; ��; g�tn; �� �

1

2

�
O
ju�tn; �� ÿ Uj2dO� b

2

�
G
jg�tn; ��j2dG

subject to the two-dimensional state equations

@tu�tn; �� ÿ
1

Re
Du�tn; �� � �u�tn; �� ? H�u�tn; �� � Hp�tn; �� �

lg0

u2
0

T �tn; ��g � f in O; �5�

H ? u�tn; �� � 0 in O; �6�

@tT �tn; �� ÿ
g

RePr
DT �tn; �� � u�tn; �� ? HT �tn; �� � 0 in O; �7�

with the boundary conditions

u�tn; �� � 0 and
@T �tn; ��
@n

� h�g�tn; �� ÿ T �tn; ��� on G;

u�tnÿ1; �� � u�nÿ1��tnÿ1� and T �tnÿ1; �� � T �nÿ1��tnÿ1� in O:

We de®ne a global (in time) solution (u, p, T, g) by patching together all the local optimal control

solutions (u(n), p(n), T(n), g(n)).

We will propose an algorithm for solving this problem with ®nite element discretization in space

and ®rst-order ®nite difference discretization in time.
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It should be noted that the piecewise-in-time optimal control problem is different from the global

optimal control problem de®ned as follows. Seek a (u, p, T, g) such that the functional

j�0;T ��u; g� � 1

2

�T

0

�
O
juÿ Uj2dOdt � b

2

�T

0

�
O
jgj2dGdt

is minimized subject to the two-dimensional state equations

@tuÿ
1

Re
Du� �u ? H�u� Hp� lg0

u2
0

Tg � f in O� �0; T �;

H ? u � 0 in O� �0; T �;

@tT ÿ
g

RePr
DT � u ? HT � 0 in O� �0; T �;

with the boundary conditions

u � 0 and
@T

@n
� h�g�x� ÿ T � on G� �0; T �;

u��; 0� � u0 and T ��; 0� � T0 in O:

The piecewise-in-time optimal control problem can be thought of as the minimization of u7U and g

in some L1 -norm, whereas the global optimal control problem is the minimization of these

quantities in the L2(0, T)-norm. We would like to point out here that the control obtained from the

piecewise-in-time optimal control problem is suboptimal and there is no guarantee that it will be the

same as that obtained from the global-in-time optimal control problem. However, as will be seen

later, the piecewise optimal control approach does a very good job in tracking the velocity ®eld. The

piecewise-in-time optimal control problem can be solved by marching in time and thus requires

essentially the same computer storage as the steady state optimal control problem. In contrast, the

numerical solution of the global optimal control problem involves a time-dependent optimality

system of equations with both initial and terminal conditions. Such a time-dependent optimality

system has to be solved either with full time±space storage or by some iterative scheme that

uncouples the initial and terminal conditions. In any case, it seems that in the context of ¯ow

matching and some other situations the numerical solution of the piecewise optimal control problem

is more straightforward and ef®cient than that of the global optimal control problem.

2. FINITE ELEMENT SOLUTION OF STEADY STATE OPTIMAL CONTROL PROBLEM

In this section we develop a ®nite element algorithm for solving the steady state optimal control

problem described in Section 1.1. We will ®rst formally derive an optimality system of equations

from which the optimal solutions can be computed. Then we de®ne a ®nite element algorithm for

solving this optimality system of equations. At the end of this section we present a numerical

example.

2.1. An optimality system of equations

To facilitate the derivation of an optimality system and the approximation by ®nite elements, we

rewrite the governing ¯ow equations in a variational form. To this end we ®rst introduce some
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function spaces. We denote by L2(O) the collection of square-integrable functions de®ned on O and

we denote the associated norm by k � k0 . Let

H1�O� � v 2 L2�O� : @v
@xi

2 L2�O� for i � 1; 2

� �
;

H1
0 �O� � fv 2 H1 : vjG � 0g;

L2
0�O� � q 2 L2�O� :

�
O

qdO � 0

� �
;

Hm�O� � v 2 L2�O� : @jajv
@xa1

1 @x
a2

2

2 L2�O� for all a � �a1; a2� with jaj4m

� �
and we denote the norm on Hm(O) by k � k m. Vector-valued counterparts of these spaces are denoted

by boldface symbols, e.g. H1� [H1]2.

We further de®ne H1
b�O� � fu 2 H1�O� : ujG � bg, Z�O� � fT 2 H1�O� : T jGs

� T1g and

Z0�O� � fT 2 H1�O� : T jGs
� 0g.

The conservative variational formulation of the steady state equations is then de®ned as follows.

Seek �u; p; T � 2 H1�O� � L2
0�O� � H1�O� with ujG � b and T jGs

� T1 such that

n
�
O
Hu : HvdO� 1

2

�
O
��u ? H�u ? vÿ �u ? H�v ? u�dOÿ

�
O

pH ? vdO� a
�
O

Tg ? vdO

�
�
O

f ? vdO 8v 2 H1
0�O�; �8�

ÿ
�
O

qH ? udO � 0 8q 2 L2
0�O�; �9�

k
�
O
HT ? HcdO� 1

2

�
O
�u ? HTcÿ u ? HcT �dO� kh

�
Gtb

�T ÿ g�cdG � 0 8c 2 Z0�O�: �10�

Here the colon notation stands for the scalar product on R26 2, a � lg0=u
2
0, k� g=RePr and b is the

boundary prescription of velocity as elaborated in Section 1.1.

Remark

We note here that we have used antisymmetrized trilinear forms such as
1
2
��G�u ? H�v ? wdOÿ �O�u ? H�w ? vdO� in place of

�
O�u ? H�w ? vdO in our variational formulation.

The variational form de®ned in this way allows us to de®ne consistent, stable and convergent ®nite

element approximations of the state and of the optimality system to be de®ned in later sections. This

type of variational form was introduced in Reference 2 for the purpose of proving the above-

mentioned three properties of the ®nite element approximation of the Navier± Stokes equations.

However, our computational experience is that the conservative formulation must be used in

computations as well to avoid having non-physical solutions.

The steady state optimal control problem we wish to solve can now be stated as follows. Seek a

�u; p; T ; g� 2 H1�O� � L2
0�O� � H1�O� � L2�Gtb� with ujG � b and T jGs

� T1 such that the functional

(1) is minimized subject to the constraints (8)±(10).

Using Lagrange multiplier principles, we may turn this constrained optimization problem into an

unconstrained one. Rigorous justi®cation of the existence of optimal solutions and the derivation of

necessary conditions of optimality for optimal control of ¯uid ¯ows are given in e.g. References 3±6.
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To make the abstract theories in optimal control more amenable to the derivation of an optimality

system of equations, we introduce the following formal procedure. We set X � H1
b�O� � L2

0�O��
Z�O� �H1

0�O� � L2
0�O� � Z0�O� � L2�Gtb� and de®ne the Lagrangian functional

l�u; p; T ;m; p; z; g� � j�u; g� ÿ n
�
O
Hu :HmdOÿ 1

2

�
O
��u ? H�u ? mÿ �u ? H�m ? u�dO

�
�
O

pH ? mdO�
�
O

f ? mdOÿ a
�
O

Tg ? mdO�
�
O
pH ? udO

ÿ k
�
O
HT ? HzdOÿ 1

2

�
O
�u ? HTzÿ u ? HzT �dO

ÿ kh

�
Gtb

�T ÿ g�zdG 8�u; p; T ;m; p; z; g� 2 X :

Note that the Lagrangian is obtained by subtracting from the cost functional the variational form of

the Navier±Stokes equations tested against the multipliers (m, p, z) (which are also termed the

adjoint state variables). An optimality system of equations that an optimum must satisfy is derived by

taking variations with respect to each variable in the Lagrangian. By taking variations with respect to

m, z and p, we simply recover the constraint equations (8)±(10). By taking variation with respect to g,

we obtain �
Gtb

�bg � khz�zdG � 0 8z 2 L2�Gtb�; i:e: g � ÿkh

b
z:

This last equation enables us to eliminate the control g in (10) to obtain

n
�
O
Hu :HvdO� 1

2

�
O
��u ? H�u ? vÿ �u ? H�v ? u�dOÿ

�
O

pH ? vdO

� a
�
O

Tg ? vdO �
�
O

f ? vdO 8v 2 H1
0�O�; �11��

O
qH ? udO � 0 8q 2 L2

0�O�; �12�

k
�
O
HT ? HcdO� 1

2

�
O
�u ? HTcÿ u ? HcT �dO� kh

�
Gtb

T � kh

b
z

� �
cdG � 0 8c 2 Z0�O�: �13�

By taking variations with respect to u, T and p, we obtain

n
�
O

m :HwdO� 1

2

�
O
��u ? H�w ? mÿ �u ? H�m ? w� �w ? H�u ? mÿ �w ? H�u ? m�dOÿ

�
O
pH ? wdO

� 1

2

�
O
�v ? HTzÿ v ? HzT �dO �

�
O�

H� u ? H� wdO 8w 2 H1
0�O�; �14�

�
O
sH ? mdO � 0 8s 2 L2

0�O�; �15�

k
�
O
Hz ? HcdO� 1

2

�
O
�u ? Hczÿ u ? Hzc�dO� a

�
O

m ? gcdO� kh

�
Gtb

zcdG � 0 8c 2 Z0�O�:

�16�
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Equations (11)±(16) together with u|G� b and T jGs
� T1 form an optimality system of equations that

an optimal solution must satisfy. We will compute optimal solutions by solving this system of

equations.

2.2. Finite element approximations

A ®nite element discretization of the optimality system consisting of (11)±(16), u|G� b and

T jGs
� T1 is de®ned in the usual manner. First one chooses families of ®nite-dimensional subspaces

Xh � H1(O) and Sh � L2(O). These families are parametrized by a parameter h that tends to zero;

commonly, h is chosen to be some measure of the grid size. These ®nite-dimensional function spaces

are de®ned on an approximate domain Oh. For simplicity we will state our results in this section by

assuming Oh�O, which is the case when O is a convex polygon in two dimensions or a convex

polyhedron in three dimensions. We assume that as h! 0,

inf
vh2Xh

�
O
�jvÿ vhj2 � jH�vÿ vh�j2�dO! 0 8v 2 H1�O�;

inf
qh2Sh\L2

0
�O�

�
O
jqÿ qhj2dO! 0 8q 2 L2

0�O�:

Here we may choose any pair of subspaces Xh and Sh such that Xh \H1
0�O� and Sh \ L2

0�O� can be

used for ®nding ®nite element approximations of solutions of the Navier±Stokes equations with

homogeneous Dirichlet conditions. Thus we make the following standard assumptions, which

are exactly those employed in well-known ®nite element methods for the Navier±Stokes equations.

First we have the approximation properties: there exists an integer k, independent of h, v and q, such

that

inf
vh2Xh

�
O
�jvÿ vhj2 � jH�vÿ vh�j2�dO � O�hm�1� 8v 2 Hm�1�O�; 14m4 k;

inf
qh2Sh\L2

0
�O�

�
O
jqÿ qhj2dO � O�hm� 8q 2 Hm�O� \ L2

0�O�; 14m4 k:

Next we assume the inf-sup condition or Ladyzhenskaya±Babuska±Brezzi condition: there exists a

constant C, independent of h, such that

inf
0 6�qh2Sh\L2

0
�O�

sup
06�vh2Xh\H1

0�O�

ÿfOqhH ? vhdO
kvhk1kqhk0

5C:

This condition assures the stability of ®nite element discretizations of the Navier±Stokes equations;

see e.g. References 7 and 8. It also assures the stability of the approximation of the optimality system

(11)±(16).5 For thorough discussions of the approximation properties and the stability condition see

e.g. References 7 and 8. References 7 and 8 may also be consulted for a catalogue of ®nite element

subspaces that meet the requirements of the above approximation properties and the inf-sup

condition.
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Once the approximating subspaces have been chosen, we look for an approximate optimal solution

�uh; ph; Th;mh; ph; zh� 2 Xh � �Sh \ L2
0�O�� � Xh � �Xh \H1

0�O�� � �Sh \ L2
0�O�� � �Xh \ Z0� by sol-

ving the discrete optimality system of equations

n
�
O
Hu :HvhdO� 1

2

�
O
��uh ? H�uh ? vh ÿ �uh ? H�vh ? uh�dOÿ

�
O

phH ? vhdO� a
�
O

Thg ? vhdO

�
�
O

f ? vhdO 8vh 2 Xh \H1
0�O�; �17�

�
O

qhH ? uhdO � 0 8qh 2 Sh \ L2
0�O�; �18�

k
�
O
HTh ? HchdO� 1

2

�
O
�uh ? HThch ÿ uh ? HchTh�dO� kh

�
Gtb

Th �
kh

b
zh

� �
chdG

� 0 8ch 2 Xh \ Z0; �19�

n
�
O
Hmh :HwhdO� 1

2

�
O
�vh ? H�Thzh ÿ vh ? HzhTh�dO�

1

2

�
O
��uh ? H�wh ? mh ÿ �uh ? H�mh ? wh�dO

� 1

2

�
O
��wh ? H�uh ? mh ÿ �wh ? H�uh ? mh�dOÿ

�
O
phH ? whdO

�
�
O�

H� uh ? H� whdO 8wh 2 Xh \H1
0�O�; �20�

�
O

rhH ? mhdO � 0 8rh 2 Sh \ L2
0�O�; �21�

k
�
O
Hzh ? HchdO� 1

2

�
O
�uh ? Hchzh ÿ uh ? Hzhch�dO� a

�
O

mh ? gchdO� kh

�
Gtb

zhchdG

� 0 8ch 2 Xh \ Z0: �22�

We point out that if a solution (u, p, T, m, p, z) for (11)±(16) with u|G� b and T jGs
� T1 belongs to

Hm�1�O� � Hm�O� �Hm�1�O� �Hm�1�O� � Hm�O� �Hm�1�O�, then we can ®nd an approximate

solution from (17)±(22) with the error estimate�
O
�juÿ uhj2 � jH�uÿ uh�j2 � jT ÿ Thj2 � jH�T ÿ Th�j2 � jpÿ phj2

� jmÿ mhj2 � jH�mÿ mh�j2 � jzÿ zhj2 � jH�zÿ zh�j2 � jpÿ phj2�dO4O�hm�1�:

We employ Newton's iteration method to solve the resulting non-linear algebraic system of

equations for the nodal values of the unknowns, which can be written as

Fi�x� � 0; 14 i4N ;

where x is the vector of unknown nodal values and N is the number of unknowns. Then Newton's

method is given as follows.
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Algorithm 1

1. Triangulate the ¯ow domain with a suf®ciently small mesh size h; choose ®nite element spaces

Xh and Sh; choose an initial guess x(0).

2. For n � 1; 2; . . . compute x(n) from the linear system

@Fi�x�nÿ1��
@xj

�x�n�j ÿx�nÿ1�
j � � ÿFi�x�nÿ1��:

Figure 1(a). Stationary uncontrolled ¯ow

Figure 1(b). Stationary controlled ¯ow

Figure 1(c). Partial enlargement of Figure 1(a)

Figure 1(d). Partial enlargement of Figure 1(b)
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Figure 1(e). Control on boundary Gbottom

Figure 1(f). Control on boundary Gtop

Figure 1(g). Triangulation of channel

Figure 1(h). Channel with sudden expansion
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At each Newton iteration we solve the linear system of equations by Gaussian elimination for

banded matrices. Under suitable assumptions, Newton's method converges at a quadratic rate.

Quadratic convergence of Newton's method is valid within a contraction ball. In order to obtain a

good initial guess, we solve the the optimality system corresponding to the Stokes problem which is

obtained by considering the minimization of the cost subject to the Stokes equations.

For high-Reynolds-number ¯ows we employ Reynolds number marching, in which one considers a

®nite sequence of Reynolds numbers R1<R2< � � � <Rf, with Rf being the desired Reynolds number,

such that R1 is small enough for Newton's method to converge with the proposed initial guess. Then

the solution obtained with Reynolds number R1 is used as initial guess for the computations with

Reynolds number R2. This process is continued until the desired Reynolds number is reached.

2.3. A vorticity minimization problem in channel ¯ows

We consider the problem of minimizing the vorticity in a backward-facing step channel ¯ow by

maintaining a temperature gradient between the top and bottom channel walls. A schematic diagram

of the channel geometry illustrating the part of the channel in which the vorticity is minimized is

given in Figure 1(h).

As elaborated in Section 1.1, we minimize the functional (1) subject to (8)±(10). The optimality

system of equations is given by (11)±(16) with u|G� b and T jGs
� T1.

The vorticity functional is minimized in the corner region of the channel O*� (1, 3)6 (0, 0�5);

see Figure 1(h). The height of the in¯ow (left) boundary is 0�5 and that of the out¯ow (right)

boundary is 1. The length of the narrower section of the channel is 1 and that of the wider section of

the channel is 5 (the total horizontal length is 6). In the computation we choose the Reynolds number

to be 200 (n� 1=200), the temperature T1� 1 on the step Gs of the channel boundary and the

characteristic values for velocity, gravity and length are taken as u0� 1, l� 0�1 and g0� 9�81. We

have chosen zero boundary condition for the velocity on the channel walls and non-zero boundary

conditions

u � 8�yÿ 0�5��1ÿ y�
0

� �
at the inflow �right� boundary

and

u � �1ÿ y�y
0

� �
at the outflow �right� boundary:

The external body force f is chosen to be zero and the parameter in the functional is chosen as

b� 0�01.

The ®nite element space Xh is chosen to be piecewise quadratic elements (for uh, mh, Th and Bh�
and Sh is chosen to be piecewise linear elements (for ph and ph). The computational domain is divided

into 332 triangles, with a ®ner mesh around the corner of the step; see Figure 1(g). We use Algorithm

1 to ®nd a ®nite element solution (uh, ph, Th, mh, ph, zh).

We obtain the optimal solution typically in seven Newton iterations starting with the Stokes

solution as initial guess. At each Newton iteration a banded Gaussian elimination is used to solve the

resulting linear system. Figure 1(b) gives the velocity ®eld uh of the optimal control solution. For

comparison purposes we have also calculated the uncontrolled solution (u0, p0, T0) from (8)±(10)

(with g� 0). The solution is given in Figure 1(a) (the velocity ®eld on a section of the channel).

Figures 1(c) and 1(d) are blow-ups of the uncontrolled and controlled ¯ows respectively at the corner

of the backward-facing step. The control distributions on the top and bottom walls are given in

Figures 1(e) and 1(f). The values of the integral
�
O� jH� uj2dO without and with controls are 1�07347
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and 0�4778 respectively. We see that we achieved a reduction of 55�79 per cent in the L2(O)-norm of

the vorticity. We would like to mention here that owing to the non-linearity in the state equations, the

minimum we obtained may only be a local minimum and there is no reason to believe it is the global

minimum.

By minimizing the functional (1), we wish to obtain a velocity distribution that has minimal

vorticity. The numerical results, Figure 1(b) in particular, demonstrate that the optimal control did a

very good job in achieving this objective.

3. FULLY DISCRETE APPROXIMATIONS OF TIME-DEPENDENT OPTIMAL

CONTROL PROBLEM

In this section we ®rst discretize the piecewise-in-time optimal control problem described in Section

1.2, we then propose an algorithm based on the discretizations and ®nally we report some numerical

results.

3.1. Time and spatial discretizations of piecewise-in-time optimal control problem

In order to compute numerically the optimal solutions for the piecewise optimal control problem

described in Section 1.2, we need to discretize this problem in both time and space.

We use the backward Euler scheme to approximate the derivatives @tu and @tT and discretize the

spatial variables by ®nite element methods. We choose families of ®nite element subspaces

Xh � H1(O) and Sh � L2(O) as in Section 2.3. We also de®ne Yh � L2(G) for the approximate

boundary controls. Once the ®nite element spaces Xh and Sh have been chosen, we de®ne the fully

discrete approximations of the piecewise optimal control problem as follows.

1. Set Dt� d.

2. De®ne u0
h � u0;h and T 0

h � T0;h, where u0;h and T0;h are the L2(O)-projection (or interpolation)

of u0 and T0 onto Xh \H1
0�O� and Xh respectively.

3. The (n� 1)th fully discrete optimal control problem: for n � 0; 1; 2; . . . ®nd a

�un�1
h ; pn�1

h ; Tn�1
h ; gn�1

h � 2 �Xh \H1
0�O�� � Xh � �Sh \ L2

0�O�� � Yh such that the functional

jn�1
h �un�1

h ; gn�1
h � �

1

2

�
O
jun�1

h ÿ Un�1j2dO� b
2

�
G
jgn�1

h j2dG

is minimized subject to the fully discrete state equations

1

Dt

�
O

un�1
h ? whdO� n

�
O
Hun�1

h :HwhdOÿ
�
O

pn�1
h H ? whdO� 1

2

�
O
��un�1

h ? H�un�1
h ? wh

ÿ �un�1
h ? H�wh ? un�1

h �dO �
�
O

fn�1
h ? whdO� 1

Dt

�
O

un
h ? whdO 8wh 2 Xh \H1

0�O�; �23��
O

rhH ? un�1
h dO � 0 8rh 2 Sh \ L2

0�O�; �24�

1

Dt

�
O

T n�1
h chdO� k

�
O
HTn�1

h ? HchdO� 1

2

�
O
�un�1

h ? HTn�1
h ch ÿ un�1

h ? HchTn�1
h �dO

� kh

�
G
�Tn�1

h ÿ gn�1
h �chdG � 1

Dt

�
O

Tn
hchdO 8ch 2 Xh: �25�
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3.2. An algorithm

In order to solve the (n� 1)th fully discrete optimal control problem for each n, we need to

introduce a Lagrange multiplier �mn�1
h ; pn�1

h ; zn�1
h � 2 �Xh \H1

0�O�� � �Sh \ L2
0�O�� � Xh to convert

the (n� 1)th fully discrete optimal control problem into a discrete optimality system of equations. A

solution for the (n� 1)th fully discrete optimal control problem can be found by solving the discrete

optimality system of equations which consists of the fully discrete Navier±Stokes equations (given

previously) and

1

Dt

�
O

mn�1
h ? whdO� n

�
O
Hmn�1

h :HwhdOÿ
�
O
pn�1

h H ? whdO

� 1

2

�
O
�vh ? HTn�1

h zn�1
h ÿ vh ? Hzn�1

h Tn�1
h �dO�

1

2

�
O
��un�1

h ? H�wh ? mn�1
h

ÿ �un�1
h ? H�mn�1

h ? wh�dO

� 1

2

�
O
��wh ? H�un�1

h ? mn�1
h ÿ �wh ? H�mn�1

h ? un�1
h �dO

�
�
O
H� un�1

h ? H� whdO 8wh 2 Xh \H1
0�O�; �26��

O
rhH ? mn�1

h dO � 0 8rh 2 Sh \ L2
0�O�; �27�

1

Dt

�
O
zn�1

h chdO� k
�
O
Hzn�1

h ? HchdO� a
�
O

mn�1
h ? gchdO� kh

�
G
zn�1

h chdG

� 1

2

�
O
�un�1

h ? Hchz
n�1
h ÿ un�1

h ? Hzn�1
h ch�dO � 0 8ch 2 Xh �28��

G
zhgn�1

h � kh

b
zhz

n�1
h dG � 0 8zh 2 Yh: �29�

Note that for each n � 0; 1; 2; . . . the (n� 1)th optimal control problem is a steady state problem for

the state variable triplet (un+1, pn+1, T n+1) and the control variable gn+1. We now summarize an

algorithm for solving the fully discrete piecewise optimal control problem.

Algorithm 2

1. Choose a (suf®ciently small) d> 0 and set Dt� d; choose a (suf®ciently small) h along with the

®nite element spaces Xh and Sh.

2. De®ne u0
h � u0;h and T 0

h � T0;h, where u0;h and T0;h are the L2(O)-projection (or interpolation)

of u0 and T0 onto Xh \H1
0�O� and Xh respectively.

3. For n � 0; 1; 2; . . . use Newton iterations to ®nd a solution to (23)±(29).

4. Set gn�1
h � ÿbÿ1khzn�1

h on G.

It should be noted that the numerical procedure for solving the system (23)±(29) is essentially the

same as that for solving the optimality system in the steady state optimal control problem; see Section

2.2.
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3.3. A velocity-tracking problem in cavity ¯ows

We now report some computational results for solving the piecewise-in-time optimal control

problem by implementing Algorithm 2. The example demonstrates that the piecewise optimal control

does a very good job of tracking the velocity ®eld. Also, in the solution process an optimal control

distribution can be obtained. The test example in this section can be solved by a scheme which treats

the advection term explicitly or by a Crank±Nicolson scheme, but for simplicity we will follow

Algorithm 2 with a backward Euler implicit scheme.

Here are some detailed data of the example. We choose the domain O� (0, 1)6 (0, 1) (i.e. the

unit square). The desired velocity ®eld is taken to be four steady velocity ®elds in four different time

intervals in [0, 1] as follows:

U�x� �
�cos�2px� ÿ 1� sin�2py�
ÿ�cos�2py� ÿ 1� sin�2px�

 !
for 04 t 4 0�25;

U�x� �
cos�2py��cos�2px� ÿ 1�

sin�2px� sin�2py�

 !
for 0�25 < t 4 0�5;

U�x� �
�cos�2px� ÿ 1� cos�2py�
ÿ�cos�2py� ÿ 1� cos�2px�

 !
for 0�5 < t 4 0�75;

U�x� �
sin�2px� cos�2py�
ÿ cos�2px� sin�2py�

 !
for 0�75 < t 4 1:

Note that U is de®ned in such a way that it satis®es the divergence- free condition. We choose the

viscosity constant n� 0�1, h� 0�1 and the time step Dt � 1
12

for the computation. All the other

parameters and the ®nite element spaces to approximate the variables are taken to be the same as in

the steady state problem.

The computational results obtained by implementing Algorithm 2 with the above data are

presented in graphical form.

Figures 2(a)±(2f) show the controlled and desired ¯ows in the ®rst quarter of the time interval.

Figures 2(a) and 2(b) show the initial states U0 and u0 of the desired and controlled ¯ows. Note that

u0 is far away from the zero vector ®eld U0. During 04 t 4 1
12

the control is in the transient stage.

Starting from t � 1
12

, the controlled ¯ow matches the desired ¯ow so well that they are hardly

distinguishable by the naked eye (Figures 2(c)±2(f)) for t� 0�166 and 0�25.

Figures 2(g)±2(l) show the controlled and desired ¯ows in the second quarter of the time interval.

Figures 2(m)±2(r) show the controlled and desired ¯ows in the third quarter of the time interval.

Figures 2(s)±2(x) show the controlled and desired ¯ows in the fourth quarter of the time interval.

To summarize this example, we see that typically in the ®rst time step of each quarter of the time

interval the controlled velocity ®eld is in a transient stage, but starting from the second step it is in

nice agreement with the target ®eld.

4. CONCLUSIONS

In this paper we studied two optimal control problems in thermally convective ¯ows using boundary

temperature controls: a vorticity minimization problem in steady channel ¯ows and a velocity-

tracking problem in unsteady cavity ¯ows. We formulated each of the control problems as a

constrained minimization problem with appropriate cost functional. The necessary conditions of
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Figure 2(a). Controlled ¯ow at t � 1
12

Figure 2(b). Desired ¯ow at t � 1
12

Figure 2(c). Controlled ¯ow at t � 1
6

Figure 2(d). Desired ¯ow at t � 1
6

Figure 2(e). Controlled ¯ow at t � 1
4

Figure 2(f). Desired ¯ow at t � 1
4
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Figure 2(g). Controlled ¯ow at t � 1
3

Figure 2(h). Desired ¯ow at t � 1
3

Figure 2(i). Controlled ¯ow at t � 5
12

Figure 2(j). Desired ¯ow at t � 5
12

Figure 2(k). Controlled ¯ow at t � 1
2

Figure 2(l). Desired ¯ow at t � 1
2
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Figure 2(m). Controlled ¯ow at t � 7
12

Figure 2(n). Desired ¯ow at t � 7
12

Figure 2(o). Controlled ¯ow at t � 2
3

Figure 2(p). Desired ¯ow at t � 2
3

Figure 2(q). Controlled ¯ow at t � 3
4

Figure 2(r). Desired ¯ow at t � 3
4
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Figure 2(s). Controlled ¯ow at t � 10
12

Figure 2(t). Desired ¯ow at t � 10
12

Figure 2(u). Controlled ¯ow at t � 11
12

Figure 2(v). Desired ¯ow at t � 11
12

Figure 2(w). Controlled ¯ow at t� 1 Figure 2(x). Desired ¯ow at t� 1
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optimality were given characterizing the controls and optimal states. The computations were carried

out using a Newton-like method combined with a mixed ®nite element method. Although the

numerical results for the problems demonstrate the feasibility of the approach, from the

computational point of view the underlying optimality system is formidable. Numerical methods

to reduce this computational cost using a reduced basis method are currently being developed and

will be reported in a forthcoming article.
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